\[V_+ = 250 \text{ mV} \]
\[A_{oc} = 2 \]
\[V_o = 500 \text{ mV} \]
\[\text{error} \leq 1 \text{ mV} \]

Then for an opamp in unity gain feedback:

\[V_o = \frac{A_{oc} V_+}{1 + A_{oc} B} \]
\[\frac{V_o - \text{error}}{V_+} = \frac{A_{oc}}{1 + A_{oc} B} \]

\[\frac{499 \text{ mV}}{250 \text{ mV}} = \frac{A_{oc}}{1 + A_{oc} B} \]

\[\frac{1.996}{1 + A_{oc} B} = A_{oc} \]

\[1.996 = A_{oc} B = \frac{1.996}{0.002} \]

\[\Rightarrow A_{oc} = 998 \text{ for error} < 1 \text{ mV} \]

\[\Rightarrow A_{oc} > 998 \text{ for error} < 1 \text{ mV} \]
Fig 24.59 is simulated and OP analysis are obtained to confirm the lack of control on I_{bias} of the output stage.

By not controlling the current in the output stage we introduce a systematic offset at the input of the op-amp. Because, as seen in Fig 1, if V_g source

$$V_g \rightarrow M_2 \rightarrow V_i$$
$$V_{bias} \rightarrow M_1$$

more current than what current source M_2 can sink, M_2 goes into triode which causes an offset in the previous stage which when referred is called input referred systematic offset.

Lack of control of output current in the simulated results.
Q#2: Output stage I_{bias} changed a lot when \(V_{DD} = 1.2 \) from

no control on I_{bias} output...

\[I = 231.3 \mu A \]

Q#2: Output stage I_{bias} for \(V_{DD} = 1V \)

\[I = 66.73 \mu A \]
Q #3 10 AC response from 1k to 1G

Following from Q#2, current control over output is implemented. Here I provide the AC response of the op-amp.

This figure is followed by a transient waveform, and then the schematic figures which show control over output stage bias current under Vgs variation which also results in minimizing input-referred systematic offset explained in Q#2.

Q #3 Transient Response
Q#3 Output I_{bias} for $V_{dd} = 1\text{V}$

The current in the output stage is now under control.

$I = 17.539\text{uA}$
Q# 4

Input common mode range

Since
\[V_{50\%} \rightarrow -V_{50\%} \]

then

\[V_{\text{in(max)}} = V_{DD} - V_{SG3} + V_{SGM2} - V_{SDM1,\text{sat}} + V_{SGM2} \]
\[= V_{DD} - V_{SG3} - V_{SGM2} + V_{PM} + V_{SGM2} \]
\[= V_{DD} - V_{SG3} + V_{PM} \]

Using values from Table 9.2 gives

\[V_{\text{in(max)}} = 1.1350 \text{mV} + 2.80 \text{mV} \]
\[= 0.93 \text{V} \]

\[V_{\text{in(min)}} = V_{SS} + V_{SG3} + V_{DG4,\text{sat}} + V_{SGM2} \]
\[= 0 - 0.05 + 0.05 + 0.35 \]
\[= 0.45 \text{V} \]

Output swing range

\[V_{\text{out(max)}} = V_{DD} - V_{SD7,\text{sat}} \]
\[= 0.95 \text{V} \]

\[V_{\text{out(min)}} = V_{SS} + V_{DSM8} + V_{DSM8,\text{sat}} \]
\[= 0 + 0.05 + 0.05 \]
\[= 0.1 \text{V} \]
To have V_{out} balanced at 500 mV we need I_{M7} to match I_{M8} if I_{V8}.

Any mismatch or systematic offset would take V_{out} to either V_{DD} rail or V_{SS} (ground rail).

* If $I_{M7} > I_{M8}$

 then $V_{out} = V_{DD} \Rightarrow M_7$ is larger than M_8

* If $I_{M8} > I_{M7}$

 $V_{out} \approx 0 \Rightarrow M_8$ is larger than M_7

This is verified in the attached simulation results!
Q#4: DC sweep which shows \(V_{out} \) reaches \(\sim 0V \) when \(V_{in} \sim 350mV \)
Q#4: \(W(M_4) \uparrow \) which takes \(M_4 \) into triode

\(W(M_{13}) \)

and \(V_{out} \approx V_{DD} \)

\[V_{out} = 898.7 \text{ mV} \]

Q#4: \(V_{out} \approx GND \) as expected

\[V_{in} \]

\[V_{out} = 57.84 \text{ mV} \]
$$A_{OLC} = g_{m12} \times \left(\frac{V_{dd} + 11 \times V_{dd2}}{g_{m7}} \right) \times g_{m4} \left(\frac{V_{dd}}{G_{ds1}} \right)$$

$$\approx g_{m2} \times \left(\frac{V_{dd}}{G_{ds2}} \right) \times g_{m4} \times \left(\frac{V_{dd}}{G_{ds7}} \right)$$

$$\approx 150 \mu \text{A} \times \left(\frac{111.1 \text{k}}{150 \mu \text{A}} \right) \times 383 \mu \text{A} \times \left(\frac{383 \text{k}}{24.04 \text{fF}} \right)$$

$$\approx 832.5 \approx 58.4 \text{ dB}$$

$$f_{3dB} = \frac{f_{PDominant}}{R_1 R_2 C_C g_m}$$

$$\approx \frac{1}{111.1 \text{k} \times 383 \mu \text{A} \times 24.04 \text{fF} \times 150 \mu \text{A}}$$

$$\approx 750.8 \text{ kHz}$$

$$f_{min} = A_{OLC} \times f_{3dB} \text{ I think } f_{min} \text{ can be computed directly}$$

$$\approx 625 \text{ MHz}$$

From simulations, we get \(f_{min} \approx 350 \text{ MHz} \)

The difference is because of the fact that when a single MOS is divided into two as done here then the lower MOS operates in the trade region, hence \(R_1 \) decreases which results in a lower \(f_{min} \).
Q#5 a) AC Response

Q # 5(b)

Gain appears to drop
Q#5 (b)

- Gain drop delayed when C is increased.
Slight drop in voltage due to gate leakage current.
Input CMR of Fig 24.29

\[V_{\text{in(max)}} = V_{DD} - V_{SGB3} - V_{DS1T(sat)} + V_{DS2(sat)} + V_{SMB2} \]
\[= 1 - 0.35 - 0.25 - 0.05 + 0.35 \]
\[= 0.9 \text{ V} \]

\[V_{\text{in(min)}} = V_{SS} + V_{DS6(sat)} + V_{DS6L(sat)} + V_{SGM1} \]
\[= 0 + 0.05 + 0.05 + 0.35 \]
\[= 0.45 \text{ V} \]

Input CMR of given op-amp

\[V_{\text{in(max)}} = V_{DD} - V_{SGB3} - V_{SGM1T} + V_{DS2(sat)} + V_{SMB1} \]
\[= 1 - 0.35 - 0.35 + 0.05 + 0.35 \]
\[= 0.7 \text{ V} \]

\[V_{\text{in(min)}} = V_{SS} + V_{DS6(sat)} + V_{DS6L(sat)} + V_{SGM1} \]
\[= 0.05 + 0.05 + 0.35 \]
\[= 0.45 \text{ V} \]

The topology in the question removes the center MOS in the diff pair which decrease the quiescent current of the op-amp. Hence power saving.
Maintains CM through two Isink branches in the diff pair!
b) \(f_1: \)

For Miller compensation due to \(C_c \)

\[
\omega_1 \cong \frac{1}{\pi [C_c + C_2]. R_2 + (C_1 + C_c(1+g_m R_2)). R_2]
\]

\(R_1 \) is the output \(R \) of first stage which is a telescopic diff. pair

\(R_2 \) is the output \(R \) of 2nd output stage

\[
A_{OL DC} = g_m (R_4) (g_{m1} g_{m1}) (V_{ol} / 2)
\]

\[
V_{dd} \quad V_{dd}
\]

\[
M_1 \quad M_2
\]

\[
R_1 \quad C_1 \quad C_2 \quad C_3
\]

\[
R_2 \quad R_3
\]

\[
V_{p} \quad V_{p}
\]

\(R_1, R_2, \) \(R_3 \) are degenerated resistances

\[
\Rightarrow \quad R_1 = g_m \frac{V_{dd}}{2}
\]

\[
R_2 = g_m \frac{V_{dd}}{2}
\]

\[
R_3 = g_m \frac{V_{dd}}{2}
\]

Using values from Table 9.2

\[
A_{OL DC} = 150 \mu (150 \mu \times (333 \text{X})^2) / 150 \mu (167 \text{K})^2
\]

\[
\times 150 \mu \times (333 \text{X}) / 167 \text{K}
\]

\[
\approx 150 \mu (333 \times 66 \text{X}) / 1118 \text{X}
\]

\[
\times 150 \mu (111.2 \mu)
\]

\[
= 62.5 \text{dB}
\]
\[f_1 = \frac{1}{2\pi R_1 R_2 C C \text{gm}} \]
\[= \frac{1}{\text{gm}} \left(\text{gm} - \text{\text{gm}^2} \cdot \frac{\text{nm} \cdot \text{m}^2}{\text{nm} \cdot \text{m}^2} \right) \times C C \times \left(\text{gm} \cdot \text{\text{gm}^2} \cdot \frac{\text{nm} \cdot \text{m}^2}{\text{nm} \cdot \text{m}^2} \right) \]
\[= \frac{1}{150 \mu (1663350 \times 14183350) \times 2.4 \times F \times (111.1 \text{ k})} \]
\[\approx \frac{1}{74 \text{ kHz}} \approx 11.9 \text{ kHz} \]

\[f_2 \text{ would be at the output} \]
\[\text{total cap} = C_L + C_C \text{ at the output} \]
\[\text{from indirect compensation we have} \]
\[f_2 \approx \frac{\text{gm} \cdot C_C \times 10}{2\pi C_C (C_L + C_C)} \]
\[\approx \frac{150 \mu \times 2.4 \times 10^{-12}}{2 \pi \times 12.5 \times F \times (240 \times 10^{-6} + 10^{-6})} \approx 12.5 \text{ kHz} \]

\[f_2 \approx \frac{\text{gm} \cdot C_L}{2\pi C_C} \approx 458.59 \mu \times 10 \]
\[\approx 440.78 \text{ kHz} \]

\[f_2 \text{ gain through common-gate} \approx \frac{1}{2 \pi 2.46 \times 10^{-12}} = \text{ very high in } 100 \text{ s of MHz} \]

\[f_m \approx \frac{\text{gm}}{2\pi C_C} \]
\[\approx \frac{200}{\text{MHz}} \]
C) As M4 are the current sources it is not a good idea to put feedback compensation in between two current source (FMOs). This may result in non-compensation and very low PM as seen in the figures attached!
PM is lost considerably as compensation is not suitable

$f_2 \approx 10 \text{kHz}$

$f_z = 200 \text{kHz}$ in the band pass range as expected

$f_{un} = 100 \text{kHz}$ as calculated